Parameterized Surfaces

Definition:

A parameterized surface $\mathrm{x}: U \subset R^{2} \rightarrow R^{3}$ is a differentiable map x from an open set $U \subset R^{2}$ into R^{3}. The set $\mathbf{x}(U) \subset R^{3}$ is called the trace of x .
x is regular if the differential $d \mathrm{x}_{q}: R^{2} \rightarrow R^{3}$ is one-to-one for all $q \in U$ (i.e., the vectors $\partial \mathbf{x} / \partial u, \partial \mathbf{x} / \partial v$ are linearly independent for all $q \in U)$. A point $p \in U$ where $d \mathbf{x}_{p}$ is not one-toone is called a singular point of \mathbf{x}.

Proposition:

Let $\mathrm{x}: U \subset R^{2} \rightarrow R^{3}$ be a regular parameterized surface and let $q \in U$. Then there exists a neighborhood V of q in R^{2} such that $\mathrm{x}(V) \subset R^{3}$ is a regular surface.

Tangent Plane

Definition 1:

By a tangent vector to a regular surface S at a point $p \in S$, we mean the tangent vector $\alpha^{\prime}(0)$ of a differentiable parameterized curve $\alpha:(-\epsilon, \epsilon) \rightarrow S$ with $\alpha(0)=p$.

Proposition 1:
Let $\mathrm{x}: U \subset R^{2} \rightarrow S$ be a parameterization of a regular surface S and let $q \in U$. The vector subspace of dimension 2 ,

$$
d \mathbf{x}_{q}\left(R^{2}\right) \subset R^{3}
$$

coincides with the set of tangent vectors to S at $\mathbf{x}(q)$.

Definition 2:
By Proposition 1, the plane $d \mathbf{x}_{q}\left(R^{2}\right)$, which passes through $\mathrm{x}(q)=p$, does not depend on the parameterization \mathbf{x}. This plane is called the tangent plane to S at p and will be denoted by $T_{p}(S)$.

The choice of the parameterization x determines a basis $\{(\partial \mathbf{x} / \partial u)(q),(\partial \mathbf{x} / \partial v)(q)\}$ of $T_{p}(S)$, called the basis associated to x .

The coordinates of a vector $w \in T_{p}(S)$ in the basis associated to a parameterization x are determined as follows:
w is the velocity vector $\alpha^{\prime}(0)$ of a curve $\alpha=$ $\mathrm{x} \circ \beta$, where $\beta:(-\epsilon, \epsilon) \rightarrow U$ is given by $\beta(t)=$ ($u(t), v(t)$), with $\beta(0)=q=\mathrm{x}^{-1}(p)$. Thus,

$$
\begin{aligned}
\alpha^{\prime}(0) & =\frac{d}{d t}(\mathbf{x} \circ \beta)(0)=\frac{d}{d t} \mathbf{x}(u(t), v(t))(0) \\
& =\mathbf{x}_{u}(q) u^{\prime}(0)+\mathbf{x}_{v}(q) v^{\prime}(0) \\
& =w
\end{aligned}
$$

Thus, in the basis $\left\{\mathbf{x}_{u}(q), \mathbf{x}_{v}(q)\right\}, w$ has coordinates $\left(u^{\prime}(0), v^{\prime}(0)\right)$, where $(u(t), v(t))$ is the expression of a curve whose velocity vector at $t=0$ is w.

Let S_{1} and S_{2} be two regular surfaces and let $\varphi: V \subset S_{1} \rightarrow S_{2}$ be a differentiable mapping of an open set V of S_{1} into S_{2}. If $p \in V$, then every tangent vector $w \in T_{p}\left(S_{1}\right)$ is the velocity vector $\alpha^{\prime}(0)$ of a differentiable parameterized curve $\alpha:(-\epsilon, \epsilon) \rightarrow V$ with $\alpha(0)=p$. The curve $\beta=\varphi \circ \alpha$ is such that $\beta(0)=\varphi(p)$, and therefore $\beta^{\prime}(0)$ is a vector of $T_{\varphi(p)}\left(S_{2}\right)$.

Proposition 2:

In the discussion above, given w, the vector $\beta^{\prime}(0)$ does not depend on the choice of α. The map $d \varphi_{p}: T_{p}\left(S_{1}\right) \rightarrow T_{\varphi(p)}\left(S_{2}\right)$ defined by $d \varphi_{p}(w)=\beta^{\prime}(0)$ is linear.

This proposition shows that $\beta^{\prime}(0)$ depends only on the map φ and the coordinates ($\left.u^{\prime}(0), v^{\prime}(0)\right)$ of w in the basis $\left\{\mathbf{x}_{u}, \mathbf{x}_{v}\right\}$.

The linear map $d \varphi_{p}$ is called the differential of φ at $p \in S_{1}$. In a similar way, we can define the differential of a differentiable function $f: U \subset$ $S \rightarrow R$ at $p \in U$ as a linear $\operatorname{map} d f_{p}: T_{p}(S) \rightarrow R$.

Proposition 3:

If S_{1} and S_{2} are regular surfaces and $\varphi: U \subset$ $S_{1} \rightarrow S_{2}$ is a differentiable mapping of an open set $U \subset S_{1}$ such that the differential $d \varphi_{p}$ of φ at $p \in U$ is an isomorphism, then φ is a local diffeomorphism at p.

The First Fundamental Form

Definition 1:

The quadratic form $I_{p}(w)=<w, w>_{p}=|w|^{2} \geq$ 0 on $T_{p}(S)$ is called the first fundamental form of the regular surface $S \subset R^{3}$ at $p \in S$.

The first fundamental form is merely the expression of how the surface S inherits the natural inner product of R^{3}. And by knowing I_{p}, we can treat metric questions on a regular surface without further references to the ambient space R^{3}.

In the basis of $\left\{\mathbf{x}_{u}, \mathbf{x}_{v}\right\}$ associated to a parameterization $\mathbf{x}(u, v)$ at p, since a tangent vector $w \in T_{p}(S)$ is the tangent vector to a parameterized curve $\alpha(t)=\mathbf{x}(u(t), v(t)), t \in(-\epsilon, \epsilon)$, with $p=\alpha(0)=\mathrm{x}\left(u_{0}, v_{0}\right)$, we have
$I_{p}\left(\alpha^{\prime}(0)\right)=<\alpha^{\prime}(0), \alpha^{\prime}(0)>_{p}$
$=\left\langle\mathbf{x}_{u} u^{\prime}+\mathbf{x}_{v} v^{\prime}, \mathbf{x}_{u} u^{\prime}+\mathbf{x}_{v} v^{\prime}\right\rangle_{p}$
$=<\mathbf{x}_{u}, \mathbf{x}_{u}>_{p}\left(u^{\prime}\right)^{2}+2<\mathbf{x}_{u}, \mathbf{x}_{v}>_{p} u^{\prime} v^{\prime}$
$+<\mathbf{x}_{v}, \mathbf{x}_{v}>_{p}\left(v^{\prime}\right)^{2}$
$=E\left(u^{\prime}\right)^{2}+2 F u^{\prime} v^{\prime}+G\left(v^{\prime}\right)^{2}$
where the values of the functions involved are computed for $t=0$, and

$$
\begin{aligned}
& E\left(u_{0}, v_{0}\right)=<\mathbf{x}_{u}, \mathbf{x}_{u}>_{p} \\
& F\left(u_{0}, v_{0}\right)=<\mathbf{x}_{u}, \mathbf{x}_{v}>_{p} \\
& G\left(u_{0}, v_{0}\right)=<\mathbf{x}_{v}, \mathbf{x}_{v}>_{p}
\end{aligned}
$$

are the coefficients.

Definition 2:
Let $R \subset S$ be a bounded region of a regular surface contained in the coordinate neighborhood of the parameterization $\mathrm{x}: U \subset R^{2} \rightarrow S$.
The positive number

$$
\begin{aligned}
A & =\iint\left|\mathbf{x}_{u} \times \mathbf{x}_{v}\right| d u d v \\
& =\iint \sqrt{\left(E G-F^{2}\right)} d u d v
\end{aligned}
$$

is called the area of R.

Gauss Map

In the study of regular curve, the rate of change of the tangent line to a curve C leads to an important geometry entity, the curvature.

Here, we will try to measure how rapidly a surface S pulls away from the tangent plane $T_{p}(S)$ in a neighborhood of a point $p \in S$. This is equivalent to measuring the rate of change at p of a unit normal vector field N on a neighborhood of p, which is given by a linear map on $T_{p}(S)$.

Definition 1:

Given a parameterization $\mathrm{x}: U \subset R^{2} \rightarrow S$ of a regular surface S at a point $p \in S$, a unit normal vector can be chosen at each point of $\mathrm{x}(U)$ by the rule

$$
N(q)=\frac{\mathbf{x}_{u} \times \mathbf{x}_{v}}{\left|\mathbf{x}_{u} \times \mathbf{x}_{v}\right|}(q)
$$

This way, we have a differentiable map N : $\mathrm{x}(U) \rightarrow R^{3}$ that associates to each $q \in \mathrm{x}(U)$ a unit normal vector $N(q)$.

More generally, if $V \subset S$ is an open set in S and $N: V \rightarrow R^{3}$ is a differentiable map which associates to each $q \in V$ a unit normal vector at q, we say that N is a differentiable field of unit normal vectors on V.

Definition 2:

A regular surface is orientable if it admits a differentiable field of unit normal vectors defined on the whole surface, and the choice of such a field N is called an orientation of S.

An orientation N on S induces an orientation on each tangent plane $T_{p}(S), p \in S$, as follows. Define a basis $\left\{v, w \in T_{p}(S)\right\}$ to be positive if $<v \times w, N>$ is positive.

While every surface is locally orientable, not all surfaces admit a differentiable field of unit normal vectors defined on the whole surface (i.e., the Mobius strip).

Definition 3:
Let $S \subset R^{3}$ be a surface with an orientation N. The $\operatorname{map} N: S \rightarrow R^{3}$ takes its values in the unit sphere

$$
S^{2}=\left\{(x, y, z) \in R^{3} ; x^{2}+y^{2}+z^{2}=1\right\}
$$

The map $N: S \rightarrow S^{2}$, thus defined, is called the Gauss map of S.

The linear map $d N_{p}: T_{p}(S) \rightarrow T_{p}(S)$ operates as follows. For each parameterized curve $\alpha(t)$ in S with $\alpha(0)=p$, we consider the parameterized curve $N \circ \alpha(t)=N(t)$ in the sphere S^{2}, this amounts to restricting the normal vector N to the curve $\alpha(t)$. The tangent vector $N^{\prime}(0)=d N_{P}\left(\alpha^{\prime}(0)\right)$ is a vector in $T_{p}(S)$. It measures the rate of change of the normal vector N, restricted to the curve $\alpha(t)$, at $t=0$. Thus, $d N_{p}$ measures how N pulls away from $N(p)$ in a neighborhood of p.

Definition 4:
A linear map $A: V \rightarrow V$ is self-adjoint if $<$ $A v, w>=\langle v, A w>$ for all $v, w \in V$.

Proposition 1:
The differential $d N_{p}: T_{p}(S) \rightarrow T_{p}(S)$ of the Gauss map is a self-adjoint linear map.

This proposition allows us to associate to $d N_{p}$ a quadratic form Q in $T_{p}(S)$, given by $Q(v)=<$ $d N_{p}(v), v>, v \in T_{p}(S)$.

Definition 5:

The quadratic form $I I_{p}$, defined in $\in T_{p}(S)$ by $I I_{p}(v)=-\left\langle d N_{p}(v), v\right\rangle$, is called the second fundamental form of S at p.

Definition 6:

Let C be a regular curve in S passing through $p \in S, k$ the curvature of C at p, and $\cos \theta=<$ $n, N>$, where n is the normal vector to C and N is the normal vector to S at p. The number $k_{n}=k \cos \theta$ is then called the normal curvature of C subset S at p.

Consider a regular curve $C \subset S$ parameterized by $\alpha(s)$, where s is the arc length of C, and with $\alpha(0)=p$. If we denote by $N(s)$ the restriction of the normal vector N to the curve $\alpha(s)$, we have $<N(s), \alpha^{\prime}(s)>=0$. Hence,

$$
<N(s), \alpha^{\prime \prime}(s)>=-<N^{\prime}(s), \alpha(s)>
$$

Therefore

$$
\begin{aligned}
I I_{p}\left(\alpha^{\prime}(0)\right) & =-<d N_{p}\left(\alpha^{\prime}(0)\right), \alpha^{\prime}(0)> \\
& =-<N^{\prime}(0), \alpha^{\prime}(0)> \\
& =<N(0), \alpha^{\prime \prime}(0)> \\
& =<N, k n>(p) \\
& =k_{n}(p)
\end{aligned}
$$

In other words, the value of the second fundamental form $I I_{p}$ for a unit vector $v \in T_{p}(S)$ is equal to the normal curvature of a regular curve passing through p and tangent to v.

Figure 3-9. Meusnier theorem: C and C_{n} have the same normal curvature at p along v.

Proposition 2 (Meusnier Theorem:)

 All curve lying on a surface S and having at a given point $p \in S$ the same tangent line have at this point the same normal curvature.