
Parameterized Surfaces

Definition:
A parameterized surface x : U ⊂ R2 → R3 is a

differentiable map x from an open set U ⊂ R2

into R3. The set x(U) ⊂ R3 is called the trace

of x.

x is regular if the differential dxq : R2 → R3

is one-to-one for all q ∈ U (i.e., the vectors

∂x/∂u, ∂x/∂v are linearly independent for all

q ∈ U). A point p ∈ U where dxp is not one-to-

one is called a singular point of x.



Proposition:
Let x : U ⊂ R2 → R3 be a regular parameter-

ized surface and let q ∈ U . Then there exists a

neighborhood V of q in R2 such that x(V ) ⊂ R3

is a regular surface.



Tangent Plane

Definition 1:
By a tangent vector to a regular surface S at

a point p ∈ S, we mean the tangent vector

α′(0) of a differentiable parameterized curve

α : (−ε, ε)→ S with α(0) = p.

Proposition 1:
Let x : U ⊂ R2 → S be a parameterization of

a regular surface S and let q ∈ U . The vector

subspace of dimension 2,

dxq(R
2) ⊂ R3

coincides with the set of tangent vectors to S

at x(q).



Definition 2:
By Proposition 1, the plane dxq(R2), which

passes through x(q) = p, does not depend on

the parameterization x. This plane is called the

tangent plane to S at p and will be denoted by

Tp(S).

The choice of the parameterization x deter-

mines a basis {(∂x/∂u)(q), (∂x/∂v)(q)} of Tp(S),

called the basis associated to x.



The coordinates of a vector w ∈ Tp(S) in the

basis associated to a parameterization x are

determined as follows:

w is the velocity vector α′(0) of a curve α =

x ◦ β, where β : (−ε, ε) → U is given by β(t) =

(u(t), v(t)), with β(0) = q = x−1(p). Thus,

α′(0) =
d

dt
(x ◦ β)(0) =

d

dt
x(u(t), v(t))(0)

= xu(q)u
′(0) + xv(q)v

′(0)

= w

Thus, in the basis {xu(q),xv(q)}, w has coor-

dinates (u′(0), v′(0)), where (u(t), v(t)) is the

expression of a curve whose velocity vector at

t = 0 is w.



Let S1 and S2 be two regular surfaces and let

ϕ : V ⊂ S1 → S2 be a differentiable mapping

of an open set V of S1 into S2. If p ∈ V , then

every tangent vector w ∈ Tp(S1) is the velocity

vector α′(0) of a differentiable parameterized

curve α : (−ε, ε) → V with α(0) = p. The

curve β = ϕ ◦ α is such that β(0) = ϕ(p), and

therefore β′(0) is a vector of Tϕ(p)(S2).



Proposition 2:
In the discussion above, given w, the vector

β′(0) does not depend on the choice of α.

The map dϕp : Tp(S1) → Tϕ(p)(S2) defined by

dϕp(w) = β′(0) is linear.

This proposition shows that β′(0) depends only

on the map ϕ and the coordinates (u′(0), v′(0))

of w in the basis {xu,xv}.

The linear map dϕp is called the differential of

ϕ at p ∈ S1. In a similar way, we can define the

differential of a differentiable function f : U ⊂

S → R at p ∈ U as a linear map dfp : Tp(S)→ R.



Proposition 3:
If S1 and S2 are regular surfaces and ϕ : U ⊂

S1 → S2 is a differentiable mapping of an open

set U ⊂ S1 such that the differential dϕp of ϕ

at p ∈ U is an isomorphism, then ϕ is a local

diffeomorphism at p.



The First Fundamental Form

Definition 1:
The quadratic form Ip(w) = < w,w >p = |w|

2 ≥

0 on Tp(S) is called the first fundamental form

of the regular surface S ⊂ R3 at p ∈ S.

The first fundamental form is merely the ex-

pression of how the surface S inherits the nat-

ural inner product of R3. And by knowing Ip,

we can treat metric questions on a regular sur-

face without further references to the ambient

space R3.



In the basis of {xu,xv} associated to a param-

eterization x(u, v) at p, since a tangent vector

w ∈ Tp(S) is the tangent vector to a param-

eterized curve α(t) = x(u(t), v(t)), t ∈ (−ε, ε),

with p = α(0) = x(u0, v0), we have

Ip(α
′(0)) = < α′(0), α′(0) >p

= < xuu
′+ xvv

′,xuu
′+ xvv

′ >p

= < xu,xu >p(u
′)2+2< xu,xv >pu

′v′

+ < xv,xv >p(v
′)2

= E(u′)2+2Fu′v′+G(v′)2

where the values of the functions involved are

computed for t = 0, and

E(u0, v0) = < xu,xu >p

F (u0, v0) = < xu,xv >p

G(u0, v0) = < xv,xv >p

are the coefficients.



Definition 2:
Let R ⊂ S be a bounded region of a regular

surface contained in the coordinate neighbor-

hood of the parameterization x : U ⊂ R2 → S.

The positive number

A =
∫ ∫

|xu × xv| dudv

=
∫ ∫ √

(EG− F2) dudv

is called the area of R.



Gauss Map

In the study of regular curve, the rate of change

of the tangent line to a curve C leads to an im-

portant geometry entity, the curvature.

Here, we will try to measure how rapidly a sur-

face S pulls away from the tangent plane Tp(S)

in a neighborhood of a point p ∈ S. This is

equivalent to measuring the rate of change at

p of a unit normal vector field N on a neigh-

borhood of p, which is given by a linear map

on Tp(S).



Definition 1:
Given a parameterization x : U ⊂ R2 → S of

a regular surface S at a point p ∈ S, a unit

normal vector can be chosen at each point of

x(U) by the rule

N(q) =
xu × xv

|xu × xv|
(q)

This way, we have a differentiable map N :

x(U)→ R3 that associates to each q ∈ x(U) a

unit normal vector N(q).

More generally, if V ⊂ S is an open set in S

and N : V → R3 is a differentiable map which

associates to each q ∈ V a unit normal vector

at q, we say that N is a differentiable field of

unit normal vectors on V.



Definition 2:
A regular surface is orientable if it admits a dif-

ferentiable field of unit normal vectors defined

on the whole surface, and the choice of such

a field N is called an orientation of S.

An orientation N on S induces an orientation

on each tangent plane Tp(S), p ∈ S, as follows.

Define a basis {v, w ∈ Tp(S)} to be positive if

< v × w,N > is positive.



While every surface is locally orientable, not

all surfaces admit a differentiable field of unit

normal vectors defined on the whole surface

(i.e., the Mobius strip).



Definition 3:
Let S ⊂ R3 be a surface with an orientation N .

The map N : S → R3 takes its values in the

unit sphere

S2 = {(x, y, z) ∈ R3;x2+ y2+ z2 = 1}

The map N : S → S2, thus defined, is called

the Gauss map of S.



The linear map dNp : Tp(S) → Tp(S) operates

as follows. For each parameterized curve α(t)

in S with α(0) = p, we consider the param-

eterized curve N ◦ α(t) = N(t) in the sphere

S2, this amounts to restricting the normal vec-

tor N to the curve α(t). The tangent vector

N ′(0) = dNP (α
′(0)) is a vector in Tp(S). It

measures the rate of change of the normal vec-

tor N , restricted to the curve α(t), at t = 0.

Thus, dNp measures how N pulls away from

N(p) in a neighborhood of p.



Definition 4:
A linear map A : V → V is self-adjoint if <

Av,w >=< v,Aw > for all v, w ∈ V .

Proposition 1:
The differential dNp : Tp(S) → Tp(S) of the

Gauss map is a self-adjoint linear map.

This proposition allows us to associate to dNp

a quadratic form Q in Tp(S), given by Q(v) =<

dNp(v), v >, v ∈ Tp(S).



Definition 5:
The quadratic form IIp, defined in ∈ Tp(S) by

IIp(v) = − < dNp(v), v >, is called the second

fundamental form of S at p.

Definition 6:
Let C be a regular curve in S passing through

p ∈ S, k the curvature of C at p, and cosθ =<

n,N >, where n is the normal vector to C and

N is the normal vector to S at p. The number

kn = kcosθ is then called the normal curvature

of C subsetS at p.





Consider a regular curve C ⊂ S parameterized

by α(s), where s is the arc length of C, and with

α(0) = p. If we denote by N(s) the restriction

of the normal vector N to the curve α(s), we

have < N(s), α′(s) >= 0. Hence,

< N(s), α′′(s) >= − < N ′(s), α(s) >

Therefore

IIp(α
′(0)) = − < dNp(α

′(0)), α′(0) >

= − < N ′(0), α′(0) >

= < N(0), α′′(0) >

= < N, kn > (p)

= kn(p)

In other words, the value of the second fun-

damental form IIp for a unit vector v ∈ Tp(S)

is equal to the normal curvature of a regular

curve passing through p and tangent to v.



Proposition 2 (Meusnier Theorem:)
All curve lying on a surface S and having at a

given point p ∈ S the same tangent line have

at this point the same normal curvature.


