Regular Surfaces

Definition 1:

A subset $S \subset R^{3}$ is a regular surface if, for each $p \in S$, there exists a neighborhood V in R^{3} and a map $\mathrm{x}: U \rightarrow V \cap S$ of an open set $U \subset R^{2}$ onto $V \cap S \subset R^{3}$ such that

- x is differentiable.
- x is a homeomorphism. Since x is continuous, this means that x has an inverse $\mathrm{x}^{-1}: V \cap S \rightarrow U$ which is continuous; that is, x^{-1} is the restriction of a continuous map $F: W \subset R^{3} \rightarrow R^{2}$ defined on an open set W containing $V \cap S$.
- For each $q \in U$, the differential $d \mathbf{x}_{q}: R^{2} \rightarrow$ R^{3} is one-to-one. (The regularity condition).

The mapping \mathbf{x} is called a parameterization or a system of (local) coordinates in (a neighborhood of) p. The neighborhood $V \cap S$ of p in S is called a coordinate neighborhood.

Note that a surface is defined as a subset S of R^{3}, not as a map as in the curve case. This is achieved by covering S with the traces of parameterization which satisfy the three conditions.

Remarks:

- Condition 1 is natural if we need to do differential calculus on S.
- Condition 2 has the purpose of preventing self-intersection in regular surfaces. It is also essential to prove that certain objects defined in terms of a parameterization do not depend on this parameterization but only on S itself.
- Condition 3 (one of the Jacobian determinants do not equal to zero) will guarantee the existence of a tangent plane at all points of S.

Proposition 1:

If $f: U \rightarrow R$ is a differentiable function in an open set U of R^{2}, then the graph of f, that is, the subset of R^{3} given by ($x, y, f(x, y)$) for $(x, y) \in U$, is a regular surface.

Definition 2:

Given a differentiable map $F: U \subset R^{n} \rightarrow R^{m}$ defined in an open set U of R^{n}, we say that $p \in U$ is a critical point of F if the differential $d F_{p}: R^{n} \rightarrow R^{m}$ is not a surjective (or onto) mapping. The image $F(p) \in R^{m}$ of a critical point is called critical value of F. A point of R^{m} which is not a critical value is called a regular value of F.
$a \in f(U)$ is a regular value of $f: U \subset R^{3} \rightarrow R$ if and only if f_{x}, f_{y} and f_{z} do not vanish simultaneously at any point in the inverse image

$$
\left.f^{-1}(a)=\{(x, y, z) \in U: f(x, y, z)=a)\right\}
$$

Proposition 2:

If $f: U \subset R^{3} \rightarrow R$ is a differentiable function and $a \in f(U)$ is a regular value of f, then $f^{-1}(a)$ is a regular surface in R^{3}.

Proposition 3:
Let $S \subset R^{3}$ be a regular surface and $p \in S$. Then there exists a neighborhood V of p in S such that V is the graph of a differentiable function which has one of the following three forms: $z=f(x, y), y=g(x, z), x=h(y, z)$.

Proposition 1 says that the graph of a differentiable function is a regular surface. Proposition 3 provides a local converse of it; that is, any regular surface is locally the graph of a differentiable function.

Proposition 4:
Let $p \in S$ be a point of a regular surface S and let $\mathrm{x}: U \subset R^{2} \rightarrow R^{3}$ be a map with $p \in \mathrm{x}(U) \subset$ S such that conditions 1 and 3 of Definition 1 hold. Assume that x is one-to-one, then x^{-1} is continuous.

It basically says that if we already know that S is a regular surface and we have a candidate x for a parameterization, we do not have to check that x^{-1} is continuous, provided that the other conditions hold.

Change of Parameters

Remarks:

- We are interested in those properties of surfaces which depend on their behavior in a neighborhood of a point.
- For regular surfaces, each point p belongs to a coordinate neighborhood, and we should be able to define the local properties in terms of these coordinates.
- The same point p can, however, can belong to various coordinate neighborhoods. Moreover, other coordinate systems could be chosen in a neighborhood of p. It must be shown that when p belongs to two coordinate neighborhoods, it is possible to pass from one of the coordinates to the other by means of a differentiable transformation.

Proposition 1:

Let p be a point of a regular surface S, and let $\mathrm{x}: U \subset R^{2} \rightarrow S, \mathrm{y}: V \subset R^{2} \rightarrow S$ be two parameterizations of S such that $p \in \mathbf{x}(U) \cap \mathbf{y}(V)=W$. Then the change of coordinates $h=\mathrm{x}^{-1} \circ \mathbf{y}$: $\mathbf{y}^{-1}(W) \rightarrow \mathbf{x}^{-1}(W)$ is a diffeomorphism; that is, h is differentiable and has a differentiable inverse h^{-1}.

If x and y are given by

$$
\begin{aligned}
\mathbf{x}(u, v) & =(x(u, v), y(u, v), z(u, v)),(u, v) \in U \\
\mathbf{y}(\xi, \eta) & =(x(\xi, \eta), y(\xi, \eta), z(\xi, \eta)),(\xi, \eta) \in V
\end{aligned}
$$

then the change of coordinate h, given by

$$
u=u(\xi, \eta), v=v(\xi, \eta),(\xi, \eta) \in \mathbf{y}^{-1}(W)
$$

has the property that the functions u and v have continuous partial derivatives of all orders, and the map h can be inverted, yielding

$$
\xi=\xi(u, v), \eta=\eta(u, v),(u, v) \in \mathbf{x}^{-1}(W)
$$

where the function ξ and η also have partial derivatives of all orders. Since

$$
\frac{\partial(u, v)}{\partial(\xi, \eta)} \frac{\partial(\xi, \eta)}{\partial(u, v)}=1
$$

this implies that the Jacobian determinants of both h and h^{-1} are nonzero everywhere.

Definition 1:
Let $f: V \subset S \rightarrow R$ be a function defined in an open subset V of a regular surface S. Then f is said to be differentiable at $p \in V$ if, for some parameterization x : $U \subset R^{2} \rightarrow S$ with $p \in$ $\mathrm{x}(U) \subset V$, the composition $f \circ \mathrm{x}: U \subset R^{2} \rightarrow R$ is differentiable at $\mathbf{x}^{-1}(p)$. f is differentiable in V if it is differentiable at all points of V.

The definition of differentiability can be easily extended to mappings between surfaces. A continuous map $\varphi: V_{1} \subset S_{1} \rightarrow S_{2}$ of an open set V_{1} of a regular surface S_{1} to a regular surface S_{2} is said to be differentiable at $p \in V_{1}$ if, given parameterizations

$$
\begin{aligned}
& \mathbf{x}_{1}: U_{1} \subset R^{2} \rightarrow S_{1} \\
& \mathbf{x}_{2}: U_{2} \subset R^{2} \rightarrow S_{2}
\end{aligned}
$$

with $p \in \mathrm{x}_{1}(U)$ and $\varphi\left(\mathrm{x}_{1}\left(U_{1}\right)\right) \subset \mathrm{x}_{2}\left(U_{2}\right)$, the map

$$
\mathrm{x}_{2}^{-1} \circ \varphi \circ \mathrm{x}_{1}: U_{1} \rightarrow U_{2}
$$

is differentiable at $q=\mathrm{x}_{1}^{-1}(p)$.

In other words, φ is differentiable if when expressed in local coordinates as

$$
\varphi\left(u_{1}, v_{1}\right)=\left(\varphi_{1}\left(u_{1}, v_{1}\right), \varphi_{2}\left(u_{1}, v_{1}\right)\right)
$$

the functions φ_{1}, φ_{2} have continuous partial derivatives of all orders.

Two regular surfaces S_{1} and S_{2} are diffeomorphic is there exists a differentiable map $\varphi: S_{1} \rightarrow S_{2}$ with a differentiable inverse $\varphi^{-1}:$ $S_{2} \rightarrow S_{1}$. Such a φ is called a diffeomorphism from S_{1} to S_{2}.

