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Abstract. The cortex is the outermost thin layer of gray matter in
the brain; geometric measurement of the cortex helps in understanding
brain anatomy and function. In the quantitative analysis of the cortex
from MR images, extracting the structure and obtaining a representation
for various measurements are key steps. While manual segmentation is
tedious and labor intensive, automatic, reliable and efficient segmenta-
tion and measurement of the cortex remain challenging problems due to
its convoluted nature. A new approach of coupled surfaces propagation
using level set methods is presented here for the problem of the seg-
mentation and measurement of the cortex. Our method is motivated by
the nearly constant thickness of the cortical mantle and takes this tight
coupling as an important constraint. By evolving two embedded surfaces
simultaneously, each driven by its own image-derived information while
maintaining the coupling, a final representation of the cortical bound-
ing surfaces and an automatic segmentation of the cortex are achieved.
Characteristics of the cortex such as cortical surface area, surface curva-
ture and thickness are then evaluated. The level set implementation of
surface propagation offers the advantage of easy initialization, computa-
tional efficiency and the ability to capture deep folds of the sulci. Results
and validation from various experiments on simulated and real 3D MR
images are provided.

1 Introduction

A significant amount of the recent anatomical MRI studies on the human brain
have been focused on the cerebral cortex. The cerebral cortex is the outermost
layer of gray matter in the brain. It is composed of columns of neurons, aligned
perpendicularly to the cortical surface, that serve as basic units of information
processing in the brain. Cortical surface area is likely to be proportional to col-
umn number and therefore surface area should be related to functional capacities.
In addition, regional cortical thickness and gray matter volume may relate to
functional capacities, and alteration in each of these features has been suspected
in specific neuropsychiatric disorders([17]). In the quantitative analysis of these
features of the cortex, segmentation is the first step.

The cerebral cortex is characterized by its convoluted surface. Due to this
convoluted nature, the segmentation of the cortex must be considered in 3D.
For example, although the cerebral cortical layer is about 3mm thick([1]), an
oblique 2D slice that happens to be approximately parallel to a particular sulcus
will give the appearance of a much thicker structure. Only by going through
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the neighboring slices can we get complete information to perform segmenta-
tion. Slice by slice manual tracing of the cortex is extremely tedious and labor
intensive, hence automatic, reliable and relatively efficient segmentation which
enables automated measurement is a highly desirable goal.

1.1 Related work

There has been a large amount of work devoted to automatic 3D segmenta-
tion. One type of approach uses region-based methods, which exploit homo-
geneity in images. Following the work of Geman & Geman[7], Markov Ran-
dom Field(MRF)-based methods have been widely used. For example, a multi-
spectral voxel classification method was used in conjunction with connectivity
to segment the brain into different tissue types from 3D MR images[2]. Mate-
rial mixture models were also used for the segmentation problem. Region-based
methods typically require further processing to group segmented parts into co-
herent structure(s). Moreover, quantitative measurement of features other than
volume does not follow immediately.

A typical alternative strategy is boundary finding, of which active contour
methods are of special note. They rely mainly on gradient features for segmenta-
tion of structures. For instance, a 3D deformable surface model using the finite-
element method was used to segment 3D images[3]. One concern regarding this
type of method is that close initialization has to be provided in order to achieve
good final results. Also, the need to override the local smoothness constraint to
allow for significant protrusions (which is highly desirable in order to capture
the sulcal folds) remains a problem.

An iterative algorithm was presented by MacDonald et al. for simultane-
ous deformation of multiple surfaces to segment MRI data with inter-surface
constraints and self-intersection avoidance, where surface deformation was for-
mulated as a cost function minimization problem[13]. This method was applied
to 3D MR brain data to extract surface models for the skull and the cortical
surface. This approach takes advantage of the information of the interrelation
between the surfaces of interest. However, drawbacks lie in its extremely high
computational expense, and the difficulty of tuning the weighting factors in the
cost function due to the complexity of the problem.

Teo et al.[19] used a system that exploited knowledge of cortical anatomy, in
which white matter and CSF regions were first segmented, then the connectivity
of the white matter was verified in regions of interest. Finally a connected repre-
sentation of the gray matter was created by a constrained growing-out from the
white matter boundary. The focus of this work was to create a representation of
cortical gray matter for functional MRI visualization.

Davatzikos et al. [4] introduced the concept of a ribbon for modeling the outer
cortex in cross-sectional brain images and then extended the model into 3D[5].
A deformable surface algorithm was constructed to find the central layer of the
cortex. Based on this parameterization, the cortical structure was characterized
through its depth map and curvature map. This method explicitly used the
structural information of the cortex. However, close initialization and significant
human interaction are needed to force the ribbon into sulcal folds.
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2 Our Approach

The cortical layer to be recovered has an nearly constant thickness and is bounded
by two surfaces: the CSF/gray matter boundary and gray/white matter bound-
ary. Across each surface, there is a local difference in the gray level values, while
in between the two surfaces there is a homogeneity of certain voxel statistics. For
our purposes, the cortical layer is defined completely by its bounding surfaces
and the homogeneity in between. Following our earlier work[20], we propose a
new approach of coupled surfaces propagation via level set methods for the seg-
mentation and measurement of the cortex. By evolving two embedded surfaces
simultaneously, each driven by its own image-based information while maintain-
ing the coupling, we are able to achieve an automatic and robust segmentation of
the cortex, and simultaneously obtain a representation of the inner and outer cor-
tical surfaces from which surface area can be calculated. Furthermore, curvature
and thickness maps are easily obtained from this coupled level set formulation.

2.1 Image information derivation

In order to capture the notion of homogeneity inside the cortical layer, we have
designed an image gray level-based local operator to obtain the likelihood of
each voxel lying on the outer and inner cortical surfaces respectively, instead of
using the gradient information alone. This model can potentially be extended to
make use of a vector of registered parametric images (such as T1, T2 and PD
MR images) or images from different modalities.

At each voxel site s, a small neighborhood around s is drawn(see Figure 2).
Now given a possible boundary with normal direction θ, dividing the neighbor-
hood into parts R1 and R2, the probability that s lies on the boundary between
tissue A and tissue B is:

pAB(θ) = p(R1 ∈ TissueA) · p(R2 ∈ TissueB) (1)

Given an estimation θ∗ of θ, we can use pAB(θ∗) as a measure of the likeli-
hood that s lies on the boundary between tissue A and tissue B.

One way of estimating θ∗ is to first generate the vector P = [p(θ1), p(θ2), ...,
p(θk)]T , and θ∗ is then the one which corresponds to the element of largest mag-
nitude in vector P . Here we make the assumption of a single parametric image
X, in which voxels belonging to tissue A are independently drawn from a Gaus-
sian distribution G(µA, σA), and voxels belonging to tissue B are independently
drawn from G(µB , σB). We have

pAB(θ) =
∏

r∈R1

1√
2πσA

e
−

(Xr−µA)2

σ2
A ·

∏

t∈R2

1√
2πσB

e
−

(Xt−µB)2

σ2
B (2)

In Figure 1, we show an example of the result from our local operator. The
local operator was applied to images after we reduced the effects of MR inho-
mogeneity by correcting using a simple fixed map. The map was determined
manually by sampling tissue types throughout the field to decide the average
inhomogeneity. Note that more complicated MR image models ([7],[11],[10]) can
be used to calculate p(θ).
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a) b) c) d)

Fig. 1. Results from our local operator compared to image gradient. (a): axial slice
from the original 3D brain images; (b): result from gradient operator; (c): result from
our local operator pBC(θ∗), B= gray matter, C=white matter; (d)pAB(θ∗), A= CSF,
B=gray matter.

2.2 Level set method

Level set methods ([18],[14],[15]) are powerful numerical techniques for analyzing
and computing interface motion. The essential idea is to represent the surface
(in our case) of interest as a front γ(t), and embed this propagating front as
the zero level set of a higher dimensional function Ψ defined by Ψ(x, t) = d,
where d is the signed distance from position x to γ(t). An Eulerian formulation
is produced for the motion of this surface propagating along its normal direction
with speed F , where F can be a function of the surface characteristics (such as
the curvature, normal direction etc.) and the image characteristics (e.g. the gray
level, gradient etc.) The equation of the evolution of Ψ , inside which our surface
is embedded as the zero level set is then given by Ψt + F | ∇Ψ |= 0.

The major advantages of using this method over other active contour strate-
gies include the following. First, the evolving level function Ψ(x, t) remains a
function; however the propagating front γ(t) may change topology, break, merge
(this allows the flexibility of the initialization in image segmentation) and form
sharp corners as Ψ evolves. Second, the intrinsic geometric properties of the front
may be easily determined from Ψ . For example, at any point of the front, the
normal vector is given by n=∇Ψ .

2.3 Coupled surfaces propagation, speed term design

In solving the problem of segmenting the cortex, we consider two moving in-
terfaces describing the inner and outer cortical bounding surfaces respectively.
Starting from inside the inner cortical surface (i.e. inside the white matter), with
an offset in between, the interfaces propagate along the outward normal direction
and stop at the desired place, while maintaining the distance between them.

Embedding each surface as the zero level set in its own level function, we
have two equations:

Ψint
+ Fin | ∇Ψin | = 0 (3)

Ψoutt
+ Fout | ∇Ψout | = 0 (4)

where Fin and Fout are functions of the surface normal direction, image-derived
information and distance between the two surfaces. The coupling is embedded
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in the design of Fin and Fout. At places where the distance between the two
surfaces is within the normal range, the two surfaces propagate according to the
image-based information. Where the distance between the two surfaces is out of
the normal range, the distance imposes a constraint on the propagation of the
surfaces.

.
R1

R2
s

θ
0 1 p(θ*)

g(p(θ  *)) h(d)

|d|maxmin

d: distance between the two bounding surfaces;  
|d|: absolute value of the distance;
min: minimal distance allowed;   max: maximal distance allowed

Fig. 2. A local operator to
derive image information.

Fig. 3. Functions g and h used in speed term design.

The motivation behind using the coupling constraint between the two sur-
faces is to make the image information on the partner surface available to the
other, thus improving the segmentation result. For example, due to volume aver-
aging, in some regions of the image, the inner cortical boundary may not be well
defined while the CSF appears clearly. A single surface approach might result in
the inner cortical surface collapsing into CSF. However with the coupling con-
straint, a minimum distance from the inner cortical surface to CSF is maintained,
thus preventing the inner surface from going into CSF. There are also cases near
structures such as eye sockets where the CSF can not be observed. While a sin-
gle surface will grow into these foreign structures, the coupled surfaces approach
stops the propagation of the outer cortical surface using the information from
the inner cortical surface. (see Figure 9)

With the level set implementation, we have a natural way to establish a cor-
respondence between the points on the two evolving surfaces through distance,
which is evaluated without extra computational expense. Recall that the value
of the level function of a front at any point is simply the distance from this point
to the current front, which is calculated as the shortest distance from this point
to all the points on the front[18]. In our case of two moving surfaces, for any
point on the inner moving surface, the distance to the outer moving surface is
the value Ψout at this point, and vice versa for the point on the outer moving
surface. Hence, we write

Fin = g(pBC(θ∗))h(Ψout) (5)

Fout = g(pAB(θ∗))h(Ψin) (6)

where g and h are the functions as shown in Figure 3, and A,B,C denote CSF,
gray matter and white matter respectively.

Function g maps larger likelihood to slower speed, i.e., as the likelihood gets
larger, g tends to zero, while as the likelihood gets to near zero, g tends to a
constant. Function h penalizes the distance off the normal range. As the distance
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goes out of normal range, h goes to zero. Thus, each surface moves with constant
speed along the normal direction and slows down when either the image-based
information becomes strong or the distance to the other surface moves away from
the normal range. Each surface finally stops when the image-derived information
is strong enough or the distance to the other surface is out of the normal range.
The speed term only has meaning on the front, i.e. the zero level set. It is then
extended from the zero level set to the whole image grid[18]. For computational
efficiency, the algorithm is implemented using a narrow band method, which
modifies the level set method so that only points close to the current propagating
fronts are affected [20].

2.4 Measurement

With coupled surfaces propagation via the level set method, it is easy to per-
form various measurements on the cortical layer with little extra computational
expense. Whole brain volume, cortical gray matter volume, white matter vol-
ume, cortical surface area, cortical surface shape and cortical thickness maps are
among the features most interesting in the study of brain structure and function.
Different combinations of the above measurements may help in determining the
pathobiology of various neuropsychiatric disorders. We now discuss one by one
the above measurements from our coupled surfaces formulation.

Volume With the signed distance function Ψ , the level set formulation keeps
track of the inside and outside of the current moving front. Once the evolution
of the coupled surfaces is completed, the cortical gray matter voxels are those
that lie inside the outer cortical surface while outside the inner cortical surface.
In the same fashion, non-brain tissue voxels will be the ones that are outside
the outer cortical surface, and voxels of white matter will lie inside the inner
cortical surface except for subcortical gray matter and ventricles. Because the
signed distance based measures are more accurate than the voxel size based
measures, we can obtain a partial volume segmentation on the data set, instead
of a binary segmentation. In other words, if the distance from a voxel to the
measured cortical boundary is less than the voxel size in width, the voxel is
considered to contain multiple tissue types.

Surface area A marching cubes algorithm[12] is performed on the signed
distance functions, Ψin and Ψout, to extract the embedded zero level sets, in
this case the inner and outer cortical surfaces, when the evolution is completed.
The surfaces are realized using a triangular representation. Surface area is then
calculated as the sum of the areas of the triangles.

Surface curvature and shape index As discussed above, one advantage
of the level set implementation is that geometric properties of the propagation
front are easily calculated[18]. In our case of surfaces propagating in 3D space,
there are many choices for the curvature of the front (for formal definitions of the
curvatures, refer to [6]), including mean curvature, κM , and Gaussian curvature,
κG. Both may be conveniently expressed in terms of the level set function Ψ :
κM = {∑(i,j,k)∈C((Ψii + Ψjj)Ψ

2
k − 2ΨiΨjΨij)}/{2(Ψ2

x + Ψ2
y + Ψ2

z )3/2}, and κG =
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{
∑

(i,j,k)∈C(Ψ2
i (ΨjjΨkk−Ψ2

jk)+2ΨiΨj(ΨikΨjk−ΨijΨkk))}/(Ψ2
x +Ψ2

y +Ψ2
z )2, where

C = {(x, y, z), (y, z, x), (z, x, y)} is the set of circular shifts of (x, y, z).
The maximum principle curvature, κ1, and the minimum principle curva-

ture, κ2, are related to Gaussian and mean curvatures through the follow-
ing formulas: κ1 = κM +

√

κ2
M − κG, and κ2 = κM −

√

κ2
M − κG. We adopt

the classification of surfaces by Koenderink[8] using the numerical relation-
ship between the two principal curvatures. A shape index function is defined
as si = 2

π arctan((κ1 + κ2)/(κ1 − κ2)), which classifies the surfaces into nine
types as show in Figure 7. With the shape index, gyri (mostly ridges) and sulci
(mostly ruts) are automatically identified. Further potential uses of the shape
index includes the definition of an atrophy index (sulci widen with age).

Thickness map As discussed above, the value of the level function of a
front at any point is the distance from this point to the current front. Also recall
that the inner and outer cortical surfaces are the zero level sets of Ψin and Ψout.
Thus, for any point on the outer cortical surface, the absolute value of Ψin at the
point is simply the distance from the point to the inner cortical surface. Using
this measure, we obtain a thickness map between the inner and outer cortical
surfaces, which can be used to study the normal thickness variations across
different regions of the brain, and also the abnormalities in brain structures.

3 Experimental Result

3.1 Result on simulated MR data with ground truth

We first present our segmentation results on the simulated MR brain images
provided by the McConnell Brain Imaging Center at the Montreal Neurological
Institute(http://www.bic.mni.mcgill.ca/). The images are generated using an
MRI simulator[9], that allows users to independently control various acquisition
parameters and obtain realistic MR images. The ground truth of the phantom is
provided in the form of membership functions of each voxel belonging to different
tissue types, such as the skull, CSF, gray matter and white matter.

The simulated data we tested our algorithm on were T1 images of a normal
brain, with the following parameters: voxel size= 1mm3, noise= 3%, intensity
non-uniformity= 0%. Starting from the unedited images, no further user inter-
action is needed after the specification of several pairs of concentric spheres as
initialization. The spheres grow out and automatically lock onto the inner and
outer cortical surfaces. As long as the spheres are placed inside the white matter,
the algorithm is robust to starting position. Measurement of the volume is then
done as described in the previous section; we use a binary segmentation in this
experiment.

To evaluate the segmentation result we apply several measures defined as
follows. For any tissue type T in the region of interest, we denote the voxels
of tissue type T recovered from our 3D algorithm as Va and the voxels that
are mostly of tissue type T according to the phantom(i.e. the value of tissue T
membership function is greater than 0.5) as Ve. We denote the overlap of Va and
Ve as Vae, and the part that is in Va but not in Ve as Vae′ . A true positive(TP)
rate is then defined to be the size of Vae relative to the size of Ve, while the false
positive(FP) rate is defined to be the ratio of the size of Vae′ to the size of Ve.
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We also define the volume ratio to be the volume of all the voxels segmented as
of tissue type T by our algorithm to the total partial volume of tissue type T
specified by the phantom(partial volume voxels contribute in only part of the
voxel size).

% whole brain cortical gray matter1 cortical gray matter2 white matter
TP rate 92.3 93.5 92.4 92.4
FP rate 2.0 5.9 6.0 3.3

volume ratio 96.3 103.9 102.7 98.1
Table 1. Comparison of our volume measurements with the phantom ground truth.
whole brain: total brain tissue(white+gray matter); cortical gray matter1: on the
frontal 49 Coronal slices; cortical gray matter2: on the top 56 Axial slices;

Table 1 shows our measurement results over 4 types: total brain tissue (in-
cluding white and gray matter), cortical gray matter in selected slices and the
white matter. Since the algorithm is designed specifically for the nearly constant
thickness of the cerebral cortex, it recovers only part of the gray matter in the
brain stem and the cerebellum where the constant thickness constraint is not
satisfied. These regions account for most of the errors in the TP rate and volume
ratio for the whole brain tissue. Since no ground truth regarding the structural
information is provided for the phantom, we compare the cortical gray matter
volume on selected slices: frontal 49 Coronal slices and top 56 Axial slices(where
there are only white matter and cortical gray matter). The average errors of the
TP and FP rates are around 6% to 7%, and the volume ratio error is within 4%.
For the white matter, the errors for the TP, FP rates and volume ratio are also
low. These results show that our algorithm performs well in isolating the brain
from non-brain tissues and in segmenting the cortex from simulated data.

Fig. 4. 3D volume rendering of the cor-
tex from our 3D algorithm with oblique
cutting planes. The convoluted thin
bright ribbon is the cortical gray matter
captured on the cutting plane.

Fig. 5. Coronal slices from 3D images;
left: original image; middle: cortical gray
matter from manual tracing; right: corti-
cal gray matter from our 3D algorithm.

3.2 Result on real MR data

We then tested our algorithm on frontal lobes of 7 high resolution MRI data
sets(SPGR, 2NEX, 1.2×1.2×1.2mm3 voxels) from a randomly chosen subset of
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young adult autistic and control subjects from our ongoing studies, to measure
frontal lobe volume, gray and white matter volume, cortical surface area, surface
curvature and cortical thickness. After preprocessing to reduce the effects of the
MR bias field inhomogeneity using a simple standard nonlinear map (which is
also a step before expert manual tracing), we used a single plane to isolate the
part of the 3D image that contained the frontal lobe, and then ran the coupled
surfaces algorithm on this part of the image to isolate the brain tissue and seg-
ment the cortex(see Figure 6). The frontal lobe was then defined independently
in the left and right hemispheres as all tissue anterior to the central sulcus.
Sub-cortical nuclei were excluded from our definition of the frontal volume.

Figure 4 shows a 3D volume rendering of the cortical gray matter of a frontal
lobe resulted from our algorithm. In Figure 5, 2D Coronal slices of the same
result are shown. Over the 7 frontal lobes, the TP and FP rates (compared to
manual tracing) of the whole frontal lobe averaged 94.1% and 2.1% respectively,
which demonstrated that our algorithm nicely isolated the brain tissue from the
non-brain tissue. The average TP and FP rate for the gray matter (measured
on 2 slices) in the frontal lobe were 86.7% and 20.8%. As we see in Figure 5, the
expert tracing tended to be more aggressive in defining the gray/white matter
boundary, which resulted in the relatively larger value of the FP rate. As a second
way to analyze the utility of the volume measurements from our algorithm, we
compute the reliability statistics on the volume measurements[16]. There was
strong agreement between the algorithm and the expert on the volume of the
frontal lobe (Pearson r = .991; intraclass correlation coefficient [ICC] = .901).
The algorithm systematically estimated the frontal lobe volume to be less than
the expert tracer (mean difference = 4%), and this accounts for the lower ICC
than Pearson coefficient. Similarly, for gray matter volume of the frontal lobe
there was also good agreement (Pearson r = .96).

The outer and inner cortical surfaces captured by the algorithm were masked
using the frontal lobe volume information to retain only the parts of the surfaces
that are from the frontal lobe as defined above. The average outer and inner
cortical surface areas over the 7 frontal lobes are 48800mm2 and 63200mm2

respectively. Figure 7 shows the outer and inner cortical surfaces of a frontal
lobe colored with their shape indices. As we can see, most parts of the gyri are
automatically identified as ridge while most parts of the sulci are identified as
rut, which coincides with our knowledge of the cortical structure.

The average cortical thickness of the 7 frontal lobes ranged from 3.2mm to
3.6mm, which matches data from postmortem studies([1]). The cortical thickness
map displayed in Figure 8 also shows an interesting pattern of information, with
gyral crowns represented as thicker than sulcal troughs. This also is in good
agreement with postmortem data ([1]). In addition, the primary motor strip and
immediately adjacent premotor areas generally appear to contain thicker cortical
gray matter than middle frontal areas, and this too is in agreement with known
regional variations in cortical thickness ([17],[1]).

Assessing the relationships between surface areas and volumes, we see that
the total inner surface area of the frontal lobe correlated quite strongly with
the total outer surface area (r = .82). Inner and outer surface areas also pre-
dicted total gray matter volume (r’s = .76 and .85, respectively). The imperfect
relationships suggest some measurement error, but also the possibility that sur-
face area adds unique information beyond that provided by gray matter volume.
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Fig. 6. Propagation of the outer(pink) and inner(yellow) bounding surfaces. left: pairs
of concentric spheres(only the outer ones are shown at the top) as initialization in
unedited 3D MR brain images(frontal part); middle: intermediate step; right: final
result of the outer and inner cortical surfaces of the frontal lobe.

−1    −7/8    −5/8    −3/8    −1/8    1/8    3/8     5/8     7/8     1 
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  spherical trough  rut   saddle  saddl e  saddle ridge   d ome  spherical
   cup                     rut           rid ge                  cap  

1     2     3    4     5 

depth(mm) 

Fig. 7. The outer and inner cortical surfaces of a frontal
lobe colored with the specified spectrum representing
shape index(si).

Fig. 8. The outer cortical
surface colored with corti-
cal thickness.

coupled surfaces 
approach prevents 
the inner surface 
from collapsing 
into CSF

coupled  surfaces 
approach prevents 
the outer  surface
from penetrating 
non−brain tissue

Fig. 9. Single vs. coupled surfaces approach. left: surfaces resulting from single surface
approach on a sagittal slice of original image (finding the inner and outer surfaces
separately); right: surfaces resulting from the coupled surfaces approach on a sagittal
slice of the expert tracing result.
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Similarly, average gray matter thickness of the frontal lobe was assessed. These
measurements were not significantly correlated with gray matter volume (r =
.25) or surface areas (inner = -.38; outer = -.10), suggesting that thickness is
nearly a constant and provides unique biological information.

3.3 User interaction and speed issue

Minimum user interaction and computational efficiency have always been two
important issues in the problem of segmenting and measuring the cortex. For an
expert to manually isolate the non-brain tissue alone (using computer-assisted
manual tracing slice by slice) takes 3 to 4 hours. The manual tracing of cor-
tical gray matter is even more time consuming. The multiple surface method
of Macdonald et al.[13], could only be computed at medium resolution due to
the computational expense. Davatzikos and Bryan[5] report that the “ribbon”
algorithm was a fairly computationally demanding iterative procedure; while
manual placement of the initial cortical surface and a multi-scale formulation
could decrease the computational load (no processing time was given). The ini-
tialization for our algorithm only requires the user to specify several pairs of
concentric spheres in the white matter, which can be done with several mouse
clicks. It should be emphasized that neither the number nor the placement of
the spheres affects the accuracy or the reproducibility of the final result. For a
3D image (1.2 × 1.2 × 1.2mm3 in voxel size) of the whole brain, the algorithm
runs in about 1 hour on a R10000 SGI Indigo2 machine. Skull-stripping, seg-
mentation and measurement of the cortex are done simultaneously.
Comparatively, to our knowledge our algorithm outperforms other related tech-
niques with respect to user interaction and computational efficiency.

4 Summary and Future Directions

In this paper, we presented a new approach to the segmentation and measure-
ment of cortical structure which is of great interest in the study of the structural
and functional characteristics of the brain. Motivated by the fact that the cor-
tex has a nearly constant thickness, we model the cortex as a volumetric layer,
which is completely defined by the two bounding surfaces and the homogeneity
in between. Starting from easily initialized spheres, and driven by image-derived
information, two interfaces evolve out to capture the inner and outer cortical
boundaries, thereby segmenting out the cortical gray matter from the white
matter, as well as isolating the brain tissue from the non-brain tissue. Corti-
cal gray matter volume and cortical surface area (both inner and outer) are
then measured. Due to the coupled level set implementation, the cortical sur-
face curvature and cortical thickness map are also easily obtained. As seen from
various experiments, our algorithm is automatic, accurate, robust and relatively
computationally efficient.

Future directions of our research include the following: volume measurement
on the sub-voxel level, possible use of a vector image data set, and testing on
image data of abnormal brains.
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